Conceptual Overview
Spatial Frequency Domain Imaging (SFDI) is a wide field technique that is able to separate the effects of optical absorption and scattering by observing how a sample alters a 2-D sinusoidal illumination pattern. When a highly scattering medium (such as biological tissue) is illuminated with a striped pattern, light from the bright regions will “flow” into the dark regions. Taken as a whole, the bright regions will get darker and the dark regions will get brighter, leading to a reduction in the pattern’s modulation depth. Absorption by tissue chromophores such as hemoglobin will also reduce the modulation depth. By measuring this change in modulation amplitude for two (or more) spatial frequencies the shape of the frequency-response (called the Modulation Transfer Function (MTF)) of the sample can be measured.
The shape of the MTF can be simulated for different levels of absorption (μa) and scattering (μs′) using Monte Carlo modeling or the diffusion approximation. The μa and μs′ are determined by finding the MTF that best fits the data. Absorption coefficients at multiple wavelengths can then be fit to known extinction spectra of tissue chromophores to determine concentrations of oxy- and dexy-hemoglobin.
SFDI References
The Excel sheet (below) contains information about SFDI publications including DOI, the PubMed URL, and the general category of the research (eg Clinical, Instrumentation, Theory, Etc.). A bibliography organized by first author’s last name is also here if you want to scan through all of them. This is our best effort to comprehensively gather all published contributions in SFDI, but we may have missed some references. If you find a paper you think should be added, send an e-mail with the necessary info.
1. Abookasis, D. et al. Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination. J. Biomed. Opt. 14, 24033 (2009).
2. Abookasis, D., Volkov, B. & Mathews, M. S. Closed head injury-induced changes in brain pathophysiology assessed with near-infrared structured illumination in a mouse model. J. Biomed. Opt. 18, 116007 (2013).
3. Angelo, J. P., van de Giessen, M. & Gioux, S. Real-time endoscopic optical properties imaging. Biomed. Opt. Express 8, 5113 (2017).
4. Angelo, J., Vargas, C. R., Lee, B. T., Bigio, I. J. & Gioux, S. Ultrafast optical property map generation using lookup tables. J. Biomed. Opt. 21, 110501 (2016).
5. Applegate, M. B. & Roblyer, D. High-speed spatial frequency domain imaging with temporally modulated light. J. Biomed. Opt. 22, 076019 (2017).
6. Ayers, F. R., Cuccia, D. J., Kelly, K. M. & Durkin, A. J. Wide-field spatial mapping of in vivo tattoo skin optical properties using modulated imaging. Lasers Surg. Med. 41, 442–453 (2009).
7. Balu, M. et al. In vivo multiphoton NADH fluorescence reveals depth-dependent keratinocyte metabolism in human skin. Biophys. J. 104, 258–67 (2013).
8. Bassi, A., Cuccia, D. J., Durkin, A. J. & Tromberg, B. J. Spatial shift of spatially modulated light projected on turbid media. J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 25, 2833–2839 (2008).
9. Bassi, A., D’Andrea, C., Valentini, G., Cubeddu, R. & Arridge, S. Detection of inhomogeneities in diffusive media using spatially modulated light. Opt. Lett. 34, 2156 (2009).
10. Bélanger, S. et al. Real-time diffuse optical tomography based on structured illumination. J. Biomed. Opt. 15, 160061–160067 (2010).
11. Bodenschatz, N., Brandes, A., Liemert, A. & Kienle, A. Sources of errors in spatial frequency domain imaging of scattering media. J. Biomed. Opt. 19, 71405 (2014).
12. Bodenschatz, N. et al. Surface layering properties of Intralipid phantoms. Phys. Med. Biol. 60, 1171–1183 (2015).
13. Bodenschatz, N., Krauter, P., Liemert, A. & Kienle, A. Quantifying phase function influence in subdiffusively backscattered light. J. Biomed. Opt. 21, 35002 (2016).
14. Bodenschatz, N., Krauter, P., Liemert, A., Wiest, J. & Kienle, A. Model-based analysis on the influence of spatial frequency selection in spatial frequency domain imaging. Appl. Opt. 54, 6725 (2015).
15. Bodenschatz, N. et al. Detecting structural information of scatterers using spatial frequency domain imaging. J. Biomed. Opt. 20, 116006 (2015).
16. Bodenschatz, N. et al. Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix. J. Biomed. Opt. 21, 66001 (2016).
17. Bodenschatz, N. et al. Dual-mode endomicroscopy for detection of epithelial dysplasia in the mouth: a descriptive pilot study. J. Biomed. Opt. 22, 1 (2017).
18. Burmeister, D. M. et al. Utility of spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) to non-invasively diagnose burn depth in a porcine model. Burns 41, (2015).
19. Chen, J., Venugopal, V., Lesage, F. & Intes, X. Time-resolved diffuse optical tomography with patterned-light illumination and detection. Opt. Lett. 35, 2121–2123 (2010).
20. Cuccia, D. J., Bevilacqua, F., Durkin, A. J., Ayers, F. R. & Tromberg, B. J. Quantitation and mapping of tissue optical properties using modulated imaging. J Biomed Opt 14, 24012 (2009).
21. Cuccia, D. J., Bevilacqua, F., Durkin, A. J. & Tromberg, B. J. Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain. Opt. Lett. 30, 1354–1356 (2005).
22. D’Andrea, C., Ducros, N., Bassi, A., Arridge, S. & Valentini, G. Fast 3D optical reconstruction in turbid media using spatially modulated light. Biomed. Opt. Express 1, 471 (2010).
23. Diep, P. et al. Three-dimensional printed optical phantoms with customized absorption and scattering properties. Biomed. Opt. Express 6, 4212–4220 (2015).
24. Dögnitz, N. & Wagnières, G. Determination of tissue optical properties by steady-state spatial frequency-domain reflectometry. Lasers Med. Sci. 13, 55–65 (1998).
25. Ducros, N. et al. Fluorescence molecular tomography of an animal model using structured light rotating view acquisition. J. Biomed. Opt. 18, 20503 (2013).
26. Ducros, N., D’Andrea, C., Bassi, A., Valentini, G. & Arridge, S. A virtual source pattern method for fluorescence tomography with structured light. Phys. Med. Biol. 57, 3811–3832 (2012).
27. Ducros, N. et al. Full-wavelet approach for fluorescence diffuse optical tomography with structured illumination. Opt. Lett. 35, 3676–8 (2010).
28. Erfanzadeh, M., Nandy, S., Kumavor, P. D. & Zhu, Q. Low-cost compact multispectral spatial frequency domain imaging prototype for tissue characterization. Biomed. Opt. Express 9, 5503 (2018).
29. Erickson, T. A., Mazhar, A., Cuccia, D., Durkin, A. J. & Tunnell, J. W. Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime. J. Biomed. Opt. 15, 36013 (2010).
30. Gardner, A. R. & Venugopalan, V. Accurate and efficient Monte Carlo solutions to the radiative transport equation in the spatial frequency domain. Opt. Lett. 36, 2269–71 (2011).
31. Ghassemi, P., Travis, T. E., Moffatt, L. T., Shupp, J. W. & Ramella-Roman, J. C. A polarized multispectral imaging system for quantitative assessment of hypertrophic scars. Biomed. Opt. Express 5, 3337–3354 (2014).
32. Ghijsen, M., Choi, B., Durkin, A. J., Gioux, S. & Tromberg, B. J. Real-time simultaneous single snapshot of optical properties and blood flow using coherent spatial frequency domain imaging (cSFDI). Biomed Opt Express 7, 870–882 (2016).
33. Ghijsen, M. et al. Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption. J. Biomed. Opt. 23, 1 (2018).
34. Gioux, S. et al. First-in-human pilot study of a spatial frequency domain oxygenation imaging system. J Biomed Opt 16, 86015 (2011).
35. Gioux, S. et al. Three-Dimensional Surface Profile Intensity Correction for Spatially-Modulated Imaging. J. Biomed. Opt. 14, 034045 (2009).
36. Goth, W. et al. Non-Destructive Reflectance Mapping of Collagen Fiber Alignment in Heart Valve Leaflets. Ann. Biomed. Eng. (2019). doi:10.1007/s10439-019-02233-0
37. Hachadorian, R. et al. Correcting Cherenkov light attenuation in tissue using spatial frequency domain imaging for quantitative surface dosimetry during whole breast radiation therapy. J. Biomed. Opt. 24, 1–10 (2018).
38. Hayakawa, C. K., Karrobi, K., Pera, V., Roblyer, D. & Venugopalan, V. Optical sampling depth in the spatial frequency domain. J. Biomed. Opt. 24, 1 (2018).
39. Hoffman, Z. R. & DiMarzio, C. A. Single-image structured illumination using Hilbert transform demodulation. J. Biomed. Opt. 22, 56011 (2017).
40. Hu, D., Fu, X., He, X. & Ying, Y. Noncontact and Wide-Field Characterization of the Absorption and Scattering Properties of Apple Fruit Using Spatial-Frequency Domain Imaging. Sci. Rep. 6, 37920 (2016).
41. Hu, D., Lu, R. & Ying, Y. A two-step parameter optimization algorithm for improving estimation of optical properties using spatial frequency domain imaging. J. Quant. Spectrosc. Radiat. Transf. 207, 32–40 (2018).
42. Hu, D., Lu, R., Ying, Y. & Fu, X. A stepwise method for estimating optical properties of two-layer turbid media from spatial-frequency domain reflectance. Opt. Express 27, 1124 (2019).
43. Kanick, S. C. et al. Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging. Biomed Opt Express 5, 3376–3390 (2014).
44. Karrobi, K., Tank, A., Tabassum, S., Pera, V. & Roblyer, D. Diffuse and nonlinear imaging of multiscale vascular parameters for in vivo monitoring of preclinical mammary tumors. J. Biophotonics e201800379 (2019). doi:10.1002/jbio.201800379
45. Kennedy, G. T. et al. Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics. J. Biomed. Opt. 22, 76013 (2017).
46. Konecky, S. D. et al. Spatial frequency domain tomography of protoporphyrin IX fluorescence in preclinical glioma models. J Biomed Opt 17, 56008 (2012).
47. Konecky, S. D. et al. Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light. Opt. Express 17, 14780–90 (2009).
48. Konecky, S. D., Rice, T., Durkin, A. J. & Tromberg, B. J. Imaging scattering orientation with spatial frequency domain imaging. J. Biomed. Opt. 16, 126001 (2011).
49. Kress, J. et al. Quantitative imaging of light-triggered doxorubicin release. Biomed. Opt. Express 6, 3546 (2015).
50. Kress, J. et al. A dual-channel endoscope for quantitative imaging, monitoring, and triggering of doxorubicin release from liposomes in living mice. Sci. Rep. 7, 15578 (2017).
51. Krishnaswamy, V. et al. Structured light scatteroscopy. J. Biomed. Opt. 19, 70504 (2014).
52. Kristensson, E., Berrocal, E. & Aldén, M. Quantitative 3D imaging of scattering media using structured illumination and computed tomography. Opt. Express 20, 14437 (2012).
53. Kumar, A. T. N. Fluorescence lifetime detection in turbid media using spatial frequency domain filtering of time domain measurements. Opt. Lett. 38, 1440–1442 (2013).
54. Kumar, A. T. N., Hou, S. S. & Rice, W. L. Tomographic fluorescence lifetime multiplexing in the spatial frequency domain. Optica 5, 624 (2018).
55. Laughney, A. M. et al. System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues. J. Biomed. Opt. 18, 36012 (2013).
56. Laughney, A. M. et al. Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging. Breast Cancer Res. 15, R61 (2013).
57. Liemert, A. & Kienle, A. Spatially modulated light source obliquely incident on a semi-infinite scattering medium. Opt. Lett. 37, 4158 (2012).
58. Lin, A. J. et al. Spatial Frequency Domain Imaging of Intrinsic Optical Property Contrast in a Mouse Model of Alzheimer’s Disease. Ann. Biomed. Eng. 39, 1349–1357 (2011).
59. Lin, A. J. et al. Visible spatial frequency domain imaging with a digital light microprojector. J. Biomed. Opt. 18, 096007 (2013).
60. Lin, A. J. et al. In vivo optical signatures of neuronal death in a mouse model of Alzheimer’s disease. Lasers Surg. Med. 46, 27–33 (2014).
61. Lin, A. J. et al. Differential pathlength factor informs evoked stimulus response in a mouse model of Alzheimer’s disease. Neurophotonics 2, 45001 (2015).
62. Loginova, D. A., Sergeeva, E. A., Fiks, I. I. & Kirillin, M. Y. Probing depth in diffuse optical spectroscopy and structured illumination imaging: a Monte Carlo study. Journal of Biomedical Photonics & Engineering 3, 10303 (2017).
63. Lukic, V., Markel, V. a & Schotland, J. C. Optical tomography with structured illumination. Opt. Lett. 34, 983 (2009).
64. Mazhar, A. et al. Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging. J Biomed Opt 15, 10506 (2010).
65. Mazhar, A. et al. Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging. J Biomed Opt 15, 61716 (2010).
66. Mazhar, A. et al. Spatial frequency domain imaging of port wine stain biochemical composition in response to laser therapy: a pilot study. Lasers Surg Med 44, 611–621 (2012).
67. Mazhar, A. et al. Laser speckle imaging in the spatial frequency domain. Biomed. Opt. Express (2011). doi:10.1364/BOE.2.001553
68. Mazhar, A. et al. Noncontact imaging of burn depth and extent in a porcine model using spatial frequency domain imaging. J. Biomed. Opt. 19, 86019 (2014).
69. McClatchy, D. M., Hoopes, P. J., Pogue, B. W., Kanick, S. C. & Kanick, S. C. Monochromatic subdiffusive spatial frequency domain imaging provides in-situ sensitivity to intratumoral morphological heterogeneity in a murine model. J. Biophotonics 10, 211–216 (2017).
70. McClatchy, D. M. et al. Light scattering measured with spatial frequency domain imaging can predict stromal versus epithelial proportions in surgically resected breast tissue. J. Biomed. Opt. 24, 1 (2018).
71. McClatchy, D. M. et al. Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging. Optica 3, 613 (2016).
72. Meitav, O., Shaul, O. & Abookasis, D. Determination of the complex refractive index segments of turbid sample with multispectral spatially modulated structured light and models approximation. J. Biomed. Opt. 22, 1 (2017).
73. Meitav, O., Shaul, O. & Abookasis, D. Spectral refractive index assessment of turbid samples by combining spatial frequency near-infrared spectroscopy with Kramers–Kronig analysis. J. Biomed. Opt. 23, 1 (2018).
74. Nadeau, K. P., Durkin, A. J. & Tromberg, B. J. Advanced demodulation technique for the extraction of tissue optical properties and structural orientation contrast in the spatial frequency domain. J Biomed Opt 19, 56013 (2014).
75. Nadeau, K. P. et al. Quantitative assessment of renal arterial occlusion in a porcine model using spatial frequency domain imaging. Opt. Lett. 38, 3566–3569 (2013).
76. Nadeau, K. P., Rice, T. B., Durkin, A. J. & Tromberg, B. J. Multifrequency synthesis and extraction using square wave projection patterns for quantitative tissue imaging. J. Biomed. Opt. 20, 116005 (2015).
77. Nandy, S. et al. Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging. J. Biomed. Opt. 21, 101402 (2016).
78. Nguyen, J. Q. et al. Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity. J Biomed Opt 18, 66010 (2013).
79. Nguyen, J. Q. et al. Effects of motion on optical properties in the spatial frequency domain. J Biomed Opt 16, 126009 (2011).
80. Nguyen, J. T. et al. A novel pilot study using spatial frequency domain imaging to assess oxygenation of perforator flaps during reconstructive breast surgery. Ann. Plast. Surg. 71, 308–315 (2013).
81. Nguyen, T. T. et al. Three-dimensional phantoms for curvature correction in spatial frequency domain imaging. Biomed Opt Express 3, 1200–1214 (2012).
82. Nguyen, T. T. A. et al. Novel application of a spatial frequency domain imaging system to determine signature spectral differences between infected and noninfected burn wounds. J. Burn Care Res. 34, 44–50 (2013).
83. Panigrahi, S. & Gioux, S. Machine learning approach for rapid and accurate estimation of optical properties using spatial frequency domain imaging. J. Biomed. Opt. 24, 1 (2018).
84. Pera, V., Karrobi, K., Tabassum, S., Teng, F. & Roblyer, D. Optical property uncertainty estimates for spatial frequency domain imaging. Biomed. Opt. Express 9, 661 (2018).
85. Pharaon, M. R. et al. Early detection of complete vascular occlusion in a pedicle flap model using quantitative [corrected] spectral imaging. Plast. Reconstr. Surg. 126, 1924–1935 (2010).
86. Pian, Q., Yao, R., Zhao, L. & Intes, X. Hyperspectral time-resolved wide-field fluorescence molecular tomography based on structured light and single-pixel detection. Opt Lett 40, 431–434 (2015).
87. Ponticorvo, A. et al. Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI). Lasers Surg Med 49, 293–304 (2017).
88. Ponticorvo, A. et al. Quantitative assessment of partial vascular occlusions in a swine pedicle flap model using spatial frequency domain imaging. Biomed Opt Express 4, 298–306 (2013).
89. Ponticorvo, A. et al. Quantitative assessment of graded burn wounds in a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI). Biomed. Opt. Express 5, 3467–3481 (2014).
90. Ponticorvo, A. et al. Evaluating clinical observation versus Spatial Frequency Domain Imaging (SFDI), Laser Speckle Imaging (LSI) and thermal imaging for the assessment of burn depth. Burns 45, 450–460 (2019).
91. Ponticorvo, A. et al. Evaluating visual perception for assessing reconstructed flap health. J. Surg. Res. 197, 210–217 (2015).
92. Reisman, M. D., Markow, Z. E., Bauer, A. Q. & Culver, J. P. Structured illumination diffuse optical tomography for noninvasive functional neuroimaging in mice. Neurophotonics 4, 21102 (2017).
93. Rice, T. B., Konecky, S. D., Owen, C., Choi, B. & Tromberg, B. J. Determination of the effect of source intensity profile on speckle contrast using coherent spatial frequency domain imaging. Biomed. Opt. Express 3, 1340 (2012).
94. Rice, T. B. et al. Quantitative determination of dynamical properties using coherent spatial frequency domain imaging. J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 28, 2108–2114 (2011).
95. Rice, T. B. et al. Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging. Biomed. Opt. Express 4, 2880–2892 (2013).
96. Robbins, C. M., Raghavan, G., Antaki, J. F. & Kainerstorfer, J. M. Feasibility of spatial frequency-domain imaging for monitoring palpable breast lesions. J Biomed Opt 22, 1–9 (2017).
97. Rohrbach, D. J. et al. Characterization of nonmelanoma skin cancer for light therapy using spatial frequency domain imaging. Biomed Opt Express 6, 1761–1766 (2015).
98. Rohrbach, D. J. et al. Preoperative Mapping of Nonmelanoma Skin Cancer Using Spatial Frequency Domain and Ultrasound Imaging. Acad. Radiol. 21, 263–270 (2014).
99. Saager, R. B., Cuccia, D. J., Saggese, S., Kelly, K. M. & Durkin, A. J. A light emitting diode (LED) based spatial frequency domain imaging system for optimization of photodynamic therapy of nonmelanoma skin cancer: quantitative reflectance imaging. Lasers Surg. Med. 45, 207–215 (2013).
100. Saager, R. B., Cuccia, D. J., Saggese, S., Kelly, K. M. & Durkin, A. J. Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain. J Biomed Opt 16, 126013 (2011).
101. Saager, R. B., Truong, A., Cuccia, D. J. & Durkin, A. J. Method for depth-resolved quantitation of optical properties in layered media using spatially modulated quantitative spectroscopy. J Biomed Opt 16, 77002 (2011).
102. Saager, R. B., Cuccia, D. J. & Durkin, A. J. Determination of optical properties of turbid media spanning visible and near-infrared regimes via spatially modulated quantitative spectroscopy. J. Biomed. Opt. 15, 17012 (2010).
103. Saager, R. B., Dang, A. N., Huang, S. S., Kelly, K. M. & Durkin, A. J. Portable (handheld) clinical device for quantitative spectroscopy of skin, utilizing spatial frequency domain reflectance techniques. Rev. Sci. Instrum. 88, 94302 (2017).
104. Saager, R. B. et al. Impact of hemoglobin breakdown products in the spectral analysis of burn wounds using spatial frequency domain spectroscopy. J. Biomed. Opt. 24, 1 (2019).
105. Saager, R. B., Sharif, A., Kelly, K. M. & Durkin, A. J. In vivo isolation of the effects of melanin from underlying hemodynamics across skin types using spatial frequency domain spectroscopy. J. Biomed. Opt. 21, 57001 (2016).
106. Schmidt, M. et al. Real-time, wide-field, and quantitative oxygenation imaging using spatiotemporal modulation of light. J. Biomed. Opt. 24, 1 (2019).
107. Sharif, S. A. et al. Noninvasive clinical assessment of port-wine stain birthmarks using current and future optical imaging technology: a review. Br. J. Dermatol. 167, 1215–1223 (2012).
108. Shaul, O., Fanrazi-Kahana, M., Meitav, O., Pinhasi, G. A. & Abookasis, D. Application of spatially modulated near-infrared structured light to study changes in optical properties of mouse brain tissue during heatstress. Appl. Opt. 56, 8880 (2017).
109. Sibai, M. et al. Preclinical evaluation of spatial frequency domain-enabled wide-field quantitative imaging for enhanced glioma resection. J. Biomed. Opt. 22, 76007 (2017).
110. Sibai, M., Veilleux, I., Elliott, J. T., Leblond, F. & Wilson, B. C. Quantitative spatial frequency fluorescence imaging in the sub-diffusive domain for image-guided glioma resection. Biomed. Opt. Express 6, 4923–4933 (2015).
111. Singh-Moon, R. P., Roblyer, D. M., Bigio, I. J. & Joshi, S. Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging. J Biomed Opt 19, 96003 (2014).
112. Sun, J. et al. Enhancing in vivo tumor boundary delineation with structured illumination fluorescence molecular imaging and spatial gradient mapping. J. Biomed. Opt. 21, 80502 (2016).
113. Sun, Y., Lu, R., Lu, Y., Tu, K. & Pan, L. Detection of early decay in peaches by structured-illumination reflectance imaging. Postharvest Biol. Technol. 151, 68–78 (2019).
114. Sunar, U., Rohrbach, D. J., Morgan, J., Zeitouni, N. & Henderson, B. W. Quantification of PpIX concentration in basal cell carcinoma and squamous cell carcinoma models using spatial frequency domain imaging. Biomed Opt Express 4, 531–537 (2013).
115. Tabassum, S. et al. Feasibility of spatial frequency domain imaging (SFDI) for optically characterizing a preclinical oncology model. Biomed. Opt. Express 7, 4154–4170 (2016).
116. Torabzadeh, M., Park, I.-Y., Bartels, R. A., Durkin, A. J. & Tromberg, B. J. Compressed single pixel imaging in the spatial frequency domain. J. Biomed. Opt. 22, 030501 (2017).
117. Travis, T. E. et al. A Multimodal Assessment of Melanin and Melanocyte Activity in Abnormally Pigmented Hypertrophic Scar. J. Burn Care Res. 36, 77–86 (2015).
118. Valdes, P. A., Angelo, J. P., Choi, H. S. & Gioux, S. qF-SSOP: real-time optical property corrected fluorescence imaging. Biomed. Opt. Express 8, 3597 (2017).
119. van de Giessen, M., Angelo, J. P. & Gioux, S. Real-time, profile-corrected single snapshot imaging of optical properties. Biomed. Opt. Express 6, 4051–4062 (2015).
120. Vargas, C. R. et al. Intraoperative Hemifacial Composite Flap Perfusion Assessment Using Spatial Frequency Domain Imaging: A Pilot Study in Preparation for Facial Transplantation. Ann. Plast. Surg. 76, 249–255 (2016).
121. Vervandier, J. & Gioux, S. Single snapshot imaging of optical properties. Biomed. Opt. Express 4, 2938–2944 (2013).
122. Weber, J. R., Cuccia, D. J., Durkin, A. J. & Tromberg, B. J. Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light. (2009). doi:10.1063/1.3116135
123. Weber, J. R. et al. Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer. J. Biomed. Opt. 16, 11015 (2011).
124. Weinkauf, C. et al. Near-instant noninvasive optical imaging of tissue perfusion for vascular assessment. J. Vasc. Surg. 69, 555–562 (2019).
125. Wilson, R. H. et al. Quantitative short-wave infrared multispectral imaging of in vivo tissue optical properties. J. Biomed. Opt. 19, 86011 (2014).
126. Yafi, A. et al. Quantitative skin assessment using spatial frequency domain imaging (SFDI) in patients with or at high risk for pressure ulcers. Lasers Surg. Med. 49, 827–834 (2017).
127. Yafi, A. et al. Postoperative Quantitative Assessment of Reconstructive Tissue Status in a Cutaneous Flap Model Using Spatial Frequency Domain Imaging. Plast. Reconstr. Surg. 127, 117–130 (2011).
128. Yang, B., Sharma, M. & Tunnell, J. W. Attenuation-corrected fluorescence extraction for image-guided surgery in spatial frequency domain. J Biomed Opt 18, 80503 (2013).
129. Yang, B. et al. Polarized light spatial frequency domain imaging for non-destructive quantification of soft tissue fibrous structures. Biomed. Opt. Express 6, 1520 (2015).
130. Yang, B. & Tunnell, J. W. Real-time absorption reduced surface fluorescence imaging. J. Biomed. Opt. 19, 90505 (2014).
131. Yao, R., Intes, X. & Fang, Q. Generalized mesh-based Monte Carlo for wide-field illumination and detection via mesh retessellation. Biomed. Opt. Express 7, 171 (2016).
132. Yudovsky, D. & Durkin, A. J. Spatial frequency domain spectroscopy of two layer media. J. Biomed. Opt. 16, 107005 (2011).
133. Yudovsky, D., Nguyen, J. Q. M. & Durkin, A. J. In vivo spatial frequency domain spectroscopy of two layer media. J. Biomed. Opt. 17, 107006 (2012).
134. Zhao, Y. et al. Deep learning model for ultrafast multifrequency optical property extractions for spatial frequency domain imaging. Opt Lett 43, 5669–5672 (2018).
135. Zhao, Y. & Roblyer, D. Spatial mapping of fluorophore quantum yield in diffusive media. J Biomed Opt 20, 86013 (2015).
136. Zhao, Y. et al. Angle correction for small animal tumor imaging with spatial frequency domain imaging (SFDI). Biomed. Opt. Express 7, 2373 (2016).